- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Adair, Bernadette_M (1)
-
Adair, James_H (1)
-
Ghasemi, Masoud (1)
-
Gomez, Enrique_D (1)
-
Hasegawa, Urara (1)
-
van_der_Vlies, André_J (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Hydrogen sulfide (H2S) is a gaseous signaling molecule in the human body and has attracted attention in cancer therapy due to its regulatory roles in cancer cell proliferation and migration. Accumulating evidence suggests that continuous delivery of H2S to cancer cells for extended periods of time suppresses cancer progression. However, one major challenge in therapeutic applications of H2S is its controlled delivery. To solve this problem, polymeric micelles are developed containing H2S donating‐anethole dithiolethione (ADT) groups, with H2S release profiles optimal for suppressing cancer cell proliferation. The micelles release H2S upon oxidation by reactive oxygens species (ROS) that are present inside the cells. The H2S release profiles can be controlled by changing the polymer design. Furthermore, the micelles that show a moderate H2S release rate exert the strongest anti‐proliferative effect in human colon cancer cells in in vitro assays as well as the chick chorioallantoic membrane cancer model, while the micelles do not affect proliferation of human umbilical vein endothelial cells. This study shows the importance of fine‐tuning H2S release profiles using a micelle approach for realizing the full therapeutic potential of H2S in cancer treatment.more » « less
An official website of the United States government
